Sensing pressure using paper

2022-09-24 08:54:03 By : shen qinmei

With an accout for you can always see everything at a glance – and you can configure your own website and individual newsletter.

To use all functions of this page, please activate cookies in your browser.

Several industrial, automotive, and healthcare applications rely on accurate and precise measurement of pressure. Flexible and wearable pressure sensors are typically fabricated using petroleum-based polymers. The solid waste generated from using such non-biodegradable plastics is harmful for the environment. To avoid this issue, researchers at the Indian Institute of Science (IISc) have now fabricated pressure sensors that use paper as the medium. 

A pressure sensor detects physical pressure and converts it into an electrical signal that is displayed in the form of a number indicative of its magnitude. Nowadays, paper-based electronic devices are gaining greater attention owing to their natural biodegradability, excellent flexibility, porous fibrous structure, light weight, and low cost. However, paper-based sensors developed so far have certain disadvantages.  

“In any sensor, there is always a trade-off between sensitivity and dynamic range. We want to have high sensitivity. Sensitivity is essentially a measure of the smallest entity (amount of pressure) that we can detect. And we want to sense that quantity over an extensive range,” says Navakanta Bhat, Professor at the Centre for Nano Science and Engineering (CeNSE) and corresponding author of the paper published in the ACS Sustainable Chemistry & Engineering. His team has proposed a design for the paper sensor that, by virtue of its structure and multilayering, achieves high sensitivity and can detect a broad range of pressures (0-120 kPa) with a response time of 1 millisecond.  

The sensor is made of plain and corrugated cellulose papers coated with tin-monosulfide (SnS) stacked alternatively to form a multi-layered architecture. SnS is a semiconductor that conducts electricity under specific conditions. “Paper in itself is an insulator. The major challenge was choosing an appropriate 3D device structure and material to give conductive properties to paper,” says Neha Sakhuja, a former PhD student at CeNSE and the first author of the paper.  

When pressure is applied on the sensor’s surface, the air gaps between the paper layers decrease, increasing the contact area between these layers. Higher contact area leads to better electrical conductivity. On releasing the pressure, the air gaps increase again, thus decreasing the electrical conduction. This modulation of the electrical conductivity drives the sensing mechanism of the paper sensor. 

“Our key contribution is the simplicity of the device. It is like creating paper origami,” explains Bhat. 

The sensor shows promise in being developed into a flexible and wearable electronic device, especially in the healthcare sector. For example, the research team mounted it onto a human cheek to investigate the motion involved in chewing, strapped it to an arm to monitor muscle contraction, and around fingers to track their tapping. The team even designed a numeric, foldable keypad constructed using the in-house paper-based pressure sensor to demonstrate the device’s usability. 

“The future applications of this device are limited only by our imagination,” says Bhat. “We would [also] like to work on increasing the stability and durability of these sensors and possibly collaborate with industries to manufacture them in large numbers.” 

You are currently not logged in to . Your changes will in fact be stored however can be lost at all times.

My notice: Add / edit notice

my watchlist Cancel Save notice

An alternative low-cost technique to produce metal powders for 3D printing

Additive manufacturing (AM), also known as metal 3D printing, creates objects by addition of material, layer by layer. A major source material for AM is metal powder, which is predominantly produced using a technique called atomisation, in which a molten metal stream is broken up into fine ... more

Paper discs that can pick up hydrogen peroxide

Researchers at the Indian Institute of Science (IISc) have developed a paper-based sensor for detecting even tiny volumes of hydrogen peroxide. This chemical is used widely in household and healthcare products like hand sanitiser as a disinfectant, in rocket fuel as a propellant, and is als ... more

Indole, and structures derived from it, are a component of many natural substances, such as the amino acid tryptophan. A new catalytic reaction produces cyclopenta[b]indoles—frameworks made of three rings that are joined at the edges—very selectively and with the desired spatial structure. ... more

Read what you need to know about our industry portal

Find out more about the company LUMITOS and our team.

Find out how LUMITOS supports you with online marketing.

© 1997-2022 LUMITOS AG, All rights reserved